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A new Viterbi decoder for convolutional codes with constraint lengths up to 15,

called the Big Viterbi Decoder, is under development for the Deep Space Network.

It will be demonstrated by decoding data from the Galileo spacecraft, which has

a rate 1/4, constraint-length 15 convolutional encoder on board. [p this article,
the. mathematical theory underlying the design of the very-large-scale-integrated

(VLSI) chips that are being used to build this decoder is explained.: The deBruijn

graph Bn describes the topology of a fully parallel, rate l/v, constraint length n + 2
Viterbi decoder, and it is shown that B, can be built by appropriately dwiring

together _ (i.e., connecting together with extra edges) many isomorphic copies of a
fixed graph called a eB, building block.e The efficiency of such a building block

is defined as the frdction of the edges in B,_ that are present inthe copies of the

building block. It is _hown, among other things, that for any _ < 1, there exists a
graph G which is a Bn building block of efficiency > a for all sufficiently large n.
These results are illustrated by describing a special hierarchical family of deBruijn

building blocks, which has led to the design of the gate-array chips being used in

the Big Viterbi Decoder. i

I. Introduction and Summary

The nth order deBruijn graph Bn is tile state diagram

for an n-stage binary shift register. It is a directed graph

with 2" vertices, each labeled with an n-bit binary string,

and 2 '_+_ edges, each labeled with an (n + 1)-bit binary

string. The vertex labels represent the contents of the
shift register at a given point of time. The label on an edge

connecting one vertex to another represents the contents of

the shift register preceded by the bit that is being input to

the shift register as it changes from one state to the next.

Figure 1 is a representation of B3.

The deBruijn graph Bn gives the topology for a fully

parallel Viterbi decoder for any rate 1/u convolutional code
with a constraint length of n+2 ([3], Chapter 7). In such a

decoder, a "butterfly" (a pair of add-compare-select units)

must be located at each vertex of the graph and all commu-
nication between butterflies takes place Mong the edges of
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the graph. In fact, the Deep Space Network (DSN) is cur-

rently developing such a decoder, called the Big Viterbi De-

coder (BVD), for constraint-length 15 convolutional codes,

to be used for the Galileo mission using a rate 1/4 code.

The BVD has 213 butterflies connected according to the

topology of B13. It is constructed from 256 identical gate-
array chips, each containing 32 butterflies. These chips

are arranged on 16 identical printed-circuit boards, each

containing 16 chips. Of the 214 "wires" (butterfly inter-

connections) in the decoder, 56 percent are internal to the
chips, another 17 percent are internal to the boards, and

27 percent are inter-board, or "backplane" connections.

Furthermore, these chips and boards are universal, in the

sense that any deBruijn graph Bn with n >_ 5 can be built

from copies of these same chips, and any B,_ with n > 9

can be built from copies of these same boards. In this ar-

ticle, the theoretical background that led to the design of

these chips and boards is given. See [1] and [5] for fur-

ther details. (The BVD will be discussed at the end of the

article--see Example K.)

I!. Preliminaries About Strings

In this section, some notation is introduced and a few

elementary facts about binary strings, which will be needed

throughout the rest of the article, are established.

Definitions. A binary string is a sequence of bits,
i.e., 0s and ls. The length of a binary string x, denoted by

]xl, is the number of bits in z. The empty string e is the

string with no bits. Thus, [eI = 0. The set of all strings of

length n is denoted by {0, 1} n. If z and y are two strings,
the concatenation of x and y, denoted by zy or x. y, is the

string obtained by following the bits of z by the bits of y.

If x = a * b * c, then a is called a prefix, b is a substring,

and c is a suffix of z. If b * c isn't empty, then a is called a
proper prefix of z; if either a or c is nonempty, b is called

a proper substring of x; and, if a * b isn't empty, c is called

a proper suffix of x. If x is a nonempty binary string,

then the symbol x L (the left part of x) denotes the string

obtained by removing the rightmost bit of x; similarly,
x R (the right part of z) denotes the string obtained by

removing the leftmost bit of x.

If S and T are sets of binary strings, then S covers T if
every string in T has a substring in S. Similarly, S prefixes

T if every string in T has a prefix in S. If T consis.ts of a

single string t, S covers or prefixes t. Also, S is irreducible

if no string in S is a substring of any other. Finally, the

cost of a set of strings S is cost(S) = _,es 2-1'1, where Is[
denotes the length of the string s.

Example (A). If x = 1011, then Ixl = 4, x L = 101,

and x n = 011. The set S = {10,111} covers {010,100,101,

110,111}, and {1,0000} covers {0, 1}" for all n > 4. Simi-

larly, {1,000} prefixes {1,00000}, and {0, 10,110,111} pre-

fixes {0,1} n for all n >_ 3. Also, {1,000} is irreducible,

but {1,001} is not. The cost of the set {10,111} is 3/8,

cost({1,000}) = 5/8, and cost({0, 1} n) = 1, for all n > 1.

Theorem (1). If S is an irreducible set of strings,

then every string z covered by S can be factored uniquely

in the form x = Asp, where s E S, A and p are (possibly

empty) strings, and (As) L has no substring from S. This

factorization will be called the S-factorization of z.

Proof: Since z is covered by S, x will have one or

more substrings from S. Among these S-substrings, there

will be a unique leflmost one, since no string in S covers

any other. Call this unique leftmost S-substring s. Then

plainly, x = Asp is the desired unique factorization.

Example (B). As noted above, S = {1,0000} is

irreducible and covers all strings of length 4. The S-

factorization of 1010 is e. 1.010, the S-factorization of 0101

is 0 * 1 * 01, and the S-factorization of 0000 is e * 0000 * e.

Lemma (1). If S is irreducible and covers {0, 1} n,

then every string x of length n or greater will have a unique

S-factorization, and if z = Asp is this factorization, then

IAsl_<n.

Proof." Every string of length n or greater will have

a substring of length n. This substring will be covered by
S and, hence, so will x. Now let x be a string of length

>_ n, and let x = Asp be its S-factorization, as described in

Theorem (1). By definition of the S-factorization, (As) L is

not covered by S. However, if IAsl > n, then [(As)LI > n,

which would imply that ()_s) L is covered by S, a contra-
diction.

Iil. deBruijn Graphs and Subgraphs

The deBruijn graph Bn, which is the state diagram

for an n-stage shift register, can be described as follows.
There are 2'* vertices, each labeled with an n-bit binary

string x. There is a directed edge from the vertex with
label x to exactly two other vertices, viz., those with labels

0X L and lx L. The edge from x to 0x L is labeled 0x and

the edge from z to ix L is labeled Ix. Similarly, there are

exactly two edges directed into x, from xRo and xR1, which
are labelled z0 and xl. This definition is summarized in

Fig. 2(a). For example, in Fig. 1, from the vertex I01

there are edges leading to 0(101) L = 010 and to l(101) L =

110. Equivalently, one can define Bn by saying that it

has 2n+l edges, each labeled with an (n + 1)-bit binary

string, and that the edge labeled X connects the vertices
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with n-bit labels X n and X L. This alternative definition

is summarized in Fig. 2(b). For example, in Fig. 1, the

edge labeled 1011 is a directed edge from (1011) n = 011

to (1011) L = 101.

Next, the notion of a subgraph of a deBruijn graph

needs to be defined. In this definition, and later, the sym-

bols E(G) and V(G) stand for the number of edges and
vertices in the graph G. Thus, for example, E(B=) = 2n+l

and V(B,_) = 2n.

Definition. If H and G are graphs, H is called a

G-subgraph, written H C_G, if H has the same vertex set

as G and an edge set that is a subset of the edge set of G.
The density of a G-subgraph H, denoted by den(H : G),

is defined as den(H: G) = E(H)/E(G).

Example (C). A Bn-subgraph of density 0 consists
of 2" isolated vertices, and a B,,-subgraph of density 1 is

Bn itself. Figure 3 shows a Ba-subgraph of density 6/16,

consisting of the eight vertices of B3 and the six edges

labeled {0010, 0011,0100,0101,0101, 0111}.

Our goal is to build a large deBruijn graph BN by con-

necting together multiple copies of a smaller graph, called

a "building block." If one thinks of the building blocks

as very-large-scale-integrated (VLSI) chips, it is natural

to want to minimize the number of edges needed to con-
nect the building blocks together. This goal leads to the

following definition.

Definition. A graph H is a building block for a graph

G if there exists G-subgraph/t, which is the disjoint union

of several copies of H. The efficiency of H as a building

block for G, denoted by eff(H : G), is defined to be den(/t :

G). In other words, eff(H : G) represents the fraction of

the edges of G that are accounted for by the edges in the

building blocks.

Theorem (2). If H is a building block for G, then

V(C)E(H)
eft(H: G) = V(H)E(G)

Proof: The G-subgraph H has the same number

of vertices as G and is the disjoint union of several dis-

joint copies of H. Since G has V(G) vertices, and H has

V(H) vertices, this means that H is the union of exactly

V(G)/V(H) copies of H. Since each of these copies of H

has E(H) edges,

E(ft) - E(H)(V(G)/V(H))

Thus,

eff(H : G) = den(/]r : G)

= E(fI)/E(G)

- (E(H)(V(G)/V(H))/E(G)

= (V(G)E(H)/V(H)E(G))

Example (D). Any B,,-subgraph H is a building

block of efficiency den(H : B,,) for B,. A B,-subgraph

of density 0 is a building block of efficiency 0 for any BN

with N > n. A B,-subgraph of density 1 (i.e., B, itself)
cannot be a building block for any larger deBruijn graph,

since the disjoint union of 2_-n copies of Bn is a discon-

nected graph with the same number of edges as BN, which

is connected. In Fig. 4 are two copies of the graph H (from

Fig. 3), relabeled and wired together with 20 new edges to
form a graph isomorphic to B4. Since B4 has 32 edges, and

the two copies of H together have 12 edges, it follows that
H is a building block for B4 of efficiency 12/32 = 37.5

percent. In fact, the graph in Fig. 3 is a building block

of efficiency 3/8 for any Blv with N >_ 3, as will be seen

in Example (F), below. The building block of Fig. 3 is

an example of what is called a universal deBruijn building
block.

Definition. A universal deBruijn building block of

order n is a Bn-subgraph that is a building block for any

deBruijn graph BN with N >_ n.

The following theorem shows that it is easy to com-

pute the efficiency of any universal deBruijn building block.

Theorem (3). Let H be a universal deBruijn build-

ing block of order n. Then, for all N _> n, eff(H : B:v) =
den(H : Bn). This common value will be called the effi-

ciency of H as a deBruijn building block.

Proof: By Theorem (3), the efficiency of H as a build-
ing block for BN is

V(B:v) E(H)
eft(H: By) --- E(BN------_"V(H'---_

2N . 2'_+Iden(H : B,,)
2N+l 2n

= den(H : Bn)

In the next section, a general construction for univer-

sal deBruijn subgraphs is described (Theorem 4), and in
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Section V (Theorem 9) it will be seen that there exist uni-

versal deBruijn subgraphs whose efficiency approaches 1
as n approaches infinity.

IV. A General Construction for Universal
deBruijn Subgraphs

In this section, the main theorem (Theorem 4) is pre-

sented, which gives a general construction for universal

deBruijn building blocks. The key to this construction is

a way of constructing a Bn-subgraph from a set of strings

of length < n.

Definition. If S is a set of strings, B'*(S) is defined

to be the Bn-subgraph obtained by deleting from B,, all
edges whose labels have a prefix in S.

L_mma (2). U S is i_reducible, E(&(S)) = 2"*+I
x (1- cost(S)); equivalently, den(B.(S) : B.) = 1-
cost(S/.

Proof: The 2n+l edges in B,, are labeled with the

(n + 1)-bit strings, and there are 2 '*+1 of them. For each
s E S, there are exactly 2 '_+l-[s] (n + 1)-bit strings with

s as a prefix. Since no (n + 1)-bit string can have two
prefixes in S (no string in S is a prefix of any other, since

S is irreducible), the subgraph Bn(S I will have exactly

2"+1 - _ses 2'_+x-l'l = 2'_+x( 1 - cost(S)) edges.

The main theorem of tiffs article is the following.

Theorem (4). If S is irreducible and covers {0, 1} '_,

then B,_(S) is a universal deBruijn building block of order
n with efficiency 1 - cost(S).

The proof of Theorem (4) is postponed until several

examples have been given and a stronger but more techni-
cal result has been stated and proved (Theorem 5).

Example (E). The set S = {0, 1} is irreducible, has

cost 1, and covers {0, 1}'* for any n >__1. Tile corresponding

subgraph Bn(S) is a B,,-subgraph of density zero, and is

plainly a building block of efficiency zero for any deBruijn

graph with N >__n.

Example (F). The set S = {1,000} is irreducible,

has cost 5[8, and covers {0, 1} s. In this case, Ba(S) is

identical to the Ba-subgraph in Fig. 3. Thus, Theorem (4)
implies that the graph B3({1, 000}/ is a universal deBruijn

building block with efficiency 3/8, as asserted in Exam-

ple (D).

The next theorem concerns a family of relabeled copies

of the graph Bn(S). If A is any binary string, the graph

B,,(S, A) is constructed from B,_(S) by inserting the string
A into each vertex or edge label just after the first (left-

most) occurrence of a substring from S. In Fig. 5, this

construction is illustrated for the graph Ba({1,000}).

Theorem (5). For all N > n,

_.J B'*(S, A) = Bu(S)
IAI=N-,*

Example (G). In Fig. 6, Theorem (5) is illustrated

by showing the two graphs B3(S, 0) and Ba(S, l) for S =

{1,000}. When taken together, these two graphs form the

graph B4(S), which is a subgraph of B4. Thus, by adding
the 20 edges whose labels have a prefix from S (I6 with

prefix 1 and 4 with prefix 000/, B4 is obtained, and indeed,

this is how one arrives at Fig. 4.

Proof of Theorem (5): Call the graph

U Bn(S,A)

hal=N-,*

appearing in the statement of the theorem the union graph.

To prove Theorem (5), one needs to show that the union

graph is a BN-snbgraph, and that its edges are exactly
those whose labels have no prefix from S. To do this, one

must prove the following four assertions (A always denotes

a string of length N - n):

(1) Every N-bit string occurs as a vertex label in

some B,_(S, A).

(2) Every edge in Bn(S, A) is an edge of the deBruijn

graph BN.

(3) No edge label in Bn(S, A) has an S-prefix.

(4) Every (N + 1)-bit string without an S-prefix ap-

pears as an edge label on some Bn(S, A).

Taken together, (1) and (2) show that the union graph

is a BN-subgraph, and (3) and (4) show that the edge

labels in the union graph are the (N+l)-bit strings without

an S-prefix.

Proof of (1): Let X be an arbitrary N-bit string,

and let X = )_sp be its S-factorization. By Lemma (1),

[As[ _< n, so that [p[ >_ N-n. If the leftmost N-n bits of
p are denoted by A, then p = Ap' and, hence, X = J_sAp _.

It follows that X appears as the label of the vertex Asp'

in Bn(S,A). For example, ifn = 3, S = {1,000}, and

N = 8, the 8-bit string X = 01011110 has S-factorization
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0* 1 * 011110. The first five bits of 011110 are 01111,

and so 01011110 appears as the label on vertex 010 in

B3(S, 01111).

Proof of (2): If an (n + 1)-bit edge label x in Ba(S)

has S-factorization z -- *ksp, then neither *knor p is empty:

*k isn't empty, because no edge label in B,(S) has an

S-prefix, and p isn't empty, since Ix] = n + 1, and by

Lemma (1), any S-factorization has [,ks] _< n. Thus, in

Bn(S), an edge with S-factorization *ksp connects the ver-
tices with labels (*ksp) n = *kRsp and (*ksp) t" -- *kspL. Fur-

thermore, this representation of the vertex labels must in

fact be the S-factorization of them, since an earlier occur-

rence of a substring from S in either *knsp or *kspL would

imply an earlier occurrence of an S-string in *ksp. This

means that in the graph B,(S, A), the edge *ksAp connects

the vertices *knsAp = (*ksAp) R and *kspL = (AsAp) R. In

other words, an edge with label X in B,_(S,A) connects
X n to X r_, and by the definition in Fig. 2(b), this is an

edge in the deBruijn graph Bn. For example, in Fig. (5),

the edge with label 001A0 connects 00!A0 n = 01A0 to

001A0 L = 001A, and this is an edge in the deBruijn graph

BIAI+s, for any string A.

Proof of (3): Let X be an edge label in the graph

Bn(S,A). Then by definition, X has the form X = *ksAp,

where *ksp is the S-factorization of an edge label in Bn(S)

with *knonempty. If X had an S prefix, say s', then either

s' would be a prefix of*ksp, or s would be a proper prefix of

s'. But both of these alternatives are impossible: s' cannot

be a prefix of *ksp, since *ksp, being an edge of B,,(S), has

no S-prefix; and s cannot be a proper substring of s', since

no string in S is a proper substring of any other. Thus,

every edge in B_(S, A) is an edge in BN(S), as asserted.

Proof of (4): To prove that every (N + 1)-bit string

with no S-prefix occurs as an edge label in Ba(S, A) for
some A, let X be such a string and let X = *ksp be its

S-factorization, in which necessarily *k is nonempty. If
A denotes the leftmost N - n bits of p, then as above,

X = AsAp'. The string *ksp' cannot have a prefix in S, for
if s' were such a prefix, then either s' would be a prefix

of X, or else s would be a proper substring of s' (since

*k is nonempty), and both of these alternatives are im-
possible. Thus, Asp' is the label on an edge of Ba(S),

and so X = *ksAp' appears as the label corresponding

to that edge in the graph Bn(S,A). For example, let

S = {1,000}, n = 3, and N = 8, and consider the nine-

bit string X = 001011100, which has no S-prefix. The
S-factorization of X is X = 00 * 1 * 011100. The first five

bits of 011100 are 01110, and so X appears as the label on

the edge 001 in the graph Ba(S, 01110).

This completes the proof of Theorem (5).

This section concludes with the proof of Theorem (4).

Proof of Theorem (4): Theorem (5) explicitly

shows that the union of 2N-" copies of B,_(S) forms a

subgraph (namely, BN(S)) of the big deBruijn graph BN,

and so BN can be constructed simply by adding the edges

missing from BN to this union. Thus, B,, is a universal

deBruijn building block. According to Theorem (3), the

efficiency of a universal deBruijn building block is the same

as its density and, by Lemma (2), the density of B,,(S) is

1 - cost(S).

V. Construction of Low-Cost Covers
for {0,1}"

In Theorem (4), it was shown how to construct univer-

sal deBruijn building blocks from covering sets for {0, 1} a

of small cost, but only a few examples were cited. In this

section, several general constructions for low-cost covers

for {0, 1} a will be given, thereby automatically produc-

ing [via Theorem (4)] efficient universal deBruijn building
blocks.

To produce a cover for {0, 1} n, begin with an arbi-

trary irreducible set S of strings of length < n, which will

be called a precover for {0, 1}n. In general, S will fail

to cover a certain subset of {0, 1}", which will be called

Omit,(S). Denote the number of strings in Omitn(S) by

omit,(S). Plainly, if Omit,(S) is adjoined to S, the re-
sulting set, denoted by C,_(S), will still be irreducible, will

cover {0, 1} n, and its cost will be cost(S) + 2-aomit,(S).
This simple but useful .construction is summarized in the

following theorem.

Theorem (6). For any irreducible set S of strings of

length < n, the set Ca(S) is an irreducible cover of {0, l} n

of cost (cost(S) + 2-nomitn(S)).

Example (H). If S = {1}, then Omit,(S) =

{00...0}, and omitn(S) = 1 for all n > 1. Thus,

Ca(S) = {1, 00--" 0} is a cover for {0, 1) n of cost 1/2+2 -a,
for all n > 1.

Example (I). If S = {10}, then for n >_ 2, Omit,(S)
consists of the n + 1 strings of the form 0k * I a-k for 0 <

k < n. Thus, ornit,(S) = n + 1, and Ca(S) is a cover for

{0, 1} n of cost 1/4 + (n + 1)/2 a, for all n >_ 2.

Example (3). If S = {100, 1101}, then for n > 4,

it can be shown that omita(S) = 1 + (_) + (_) and, thus,

Ca(S) is a cover for {0, 1} a of cost 3/16+ (1+ (_)+ (;))/2"
for all n > 4.
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If Theorems (4) and (6) are combined, it is found that
if S is an irreducible set of strings of length < n, then

B,*(Cn(S)) is a universal deBruijn building block of order
n and efficiency 1 - cost(S) - 2-,*omit, (S). For simplicity,

B,(C,*(S)) is denoted by /3,*(S), and this fact is given as
a theorem.

Theorem (7). If S is an irreducible set of strings

of length < n, then the graph /}n(S) is a universal de-

Bruijn building block of order n and efficiency 1 - cost(S)

- 2-'_omit,* (S).

The following theorem is a partial generalization of

Examples (tI) and (I).

Theorem (8). Fix m >_ 1. If Sm= {10m-l}, then

as n -- oo, omit,*(Sro) = O(o_,_), where crro is the largest

positive root of the equation z',* - 2z ro-1 + 1 = 0, which is

strictly less than 2. Thus, for all n >_ m, C,*(S) is a cover

for {0, 1} n of cost 2-m+O(a,_/2) ,*, which approaches 2-ro
as n --+ co.

Proof: According to [2], if m is fixed, the generating

function f,_(z) = _,n>oomit,*(Sm)z ,* is given in closed

form by fro(z) = 1/(1-- 2z + zro). It follows then from
the generM theory of rational generating functions (see

[4], Theorem 4.1.1), that omit,, = O(#r"), where /5 is the
reciprocal of the smallest positive root of the equation
1 - 2z + z m = 0, which is also the largest positive root

of the "reciprocal" polynomial Pro(z) = zro - 2z ro-1 + 1.

The largest root of Po_(z) is strictly less than 2, since

Pro(l) = 0, P,_(2) = 1, and P_(z) > 0 for z > 2.

Corollary. If c,* denotes the minimum cost for a cover

for {0, 1},*, then lirn_oo c,* = 0.

Proof: Theorem (8) implies that for any m > 1,

lim,*-..oo cn <_ 2-m.

Remarks. _¥e conjecture, but cannot prove, that

c, = O(1/n). However, McEliece and Swanson, in a forth-
coming paper, will show that c,* = fl(1/n) and e,* =

O(log n/n). [The latter result is based on a more careful

analysis of the type given in Theorem (8).]

In view of the connection between covers for {0, 1},*

and universal deBruijn building blocks, the Corollary of

Theorem (8) implies the following.

Theorem (9). There exist universal deBruijn build-

ing blocks whose efficiency is arbitrarily close to 1.

Although Theorem (8) gives an infinite family of rea-
sonably cheap covers for {0, 1} n, it does not produce the

cheapest possible covers for all values of n. Indeed, Table 1

gives the cheapest known covers of {0, 1} n, for 1 < n < 10

and, therefore, also the most efficient universal deBruijn

building blocks known, for orders up to 10. In every case,

only the precover S is given, it being understood that the

actual cover is the larger set C,*(S). Notice that for n _ 7,

the "10... 0" construction of Theorem (8) gives the best

cover known, while for 8 __ n _< 10 (and presumably for

all larger values of n, too) the best cover is considerably

more complicated. For 1 __ n _ 5, it is believed that the
values in Table 1 are the best possible. For larger val-

ues of n, however, improvements may be possible. For

n >__8, the covers described in the table are based on

the general "{100, 1101}" cover described in Example (J).
For example, for n = 8, omit({100, 1101}) = 37, so that

Cs({100, 1101}) is a cover for {0, 1} s of cost 1/8 + 1/16 +

37/256 = 85/256. However, by trial and error, it is found

that of the 37 strings in Omit({100, 1101}), all but six

are covered by {010101,010111, 011111,0000001, 0000101,

0000111}. Thus, if {100, I101} U {010101,010111,011111,
0000001,0000101,0000111} is used as a precover, Theo-

rem (6) guarantees a cover of cost 1/8 + 1/16 + 1/64 +

1/64 + 1/64 + 1/128 + 1/128 + 1/128 + 6/256 = 72/256, as

shown in Table 1. (Using {10} as a precover for precover

for n = 8 results in a cover of cost 73/256.)

VI. Hierarchical Building Blocks

It has been seen that the universal deBruijn build-

ing blocks described in Theorem (4) can be used to build

deBruijn graphs of any size. Surprisingly, however, they
can also be used as building blocks for larger universal

deBruijn building blocks! This is useful in practice when

many chips must be put on several boards, and the boards

are then wired together to make the deBruijn graph. The
main theorem here is the following.

Theorem (10). Suppose k _< n. If S is irreducible
and covers {0, 1} k, T is irreducible and covers {0, 1}0, and

if S prefixes T, then Bk(S) is a building block for B,*(T).

Furthermore,

1 - cost(S)

eff(Bk(S) : B,*(T)) = "1- cost(T)

Proof'. Theorem (5) says that B,* (S) is equal to

U Bk(S,A)
A:[Al=n-k
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and so Bk(S) is a building block for B,_(S). But since every
string in T has a prefix in S, then B,(S) C_B,(T), so that

Bk(S) is also a building block for Bn(T). To calculate

efr(B (S) : B.(T)), Theorem (2) and (4) are .sed:

V(Bn(T))E(Bk(S))

eff(Bk(S) : B,_(T))= V(Bk(S))E(B,_(T))

2"2 k+1 (1 - cost(S))

2k2 "+I (1 - cost(T))

I - cost(S)
1 - cost(T)

Lemma (3). If .5' is any set of strings, and if k _< n,

then Ck(S) prefixes C,(S).

Proof: By definition, Ck(S) = S 00mitk(S) and

C,(S) = SU Omit,_(S). A string s E Omit,(S) is a string

of length n with no substring from S. The k-bit prefix of

s is a string of length k, which also has no substring from

S, and so this prefix is in Omit,,(S). Thus, every string in

C,_(S) is either in S or has a prefix in Onfitj,(S).

Theorem (11). If k < n, then /3k(S) is a building

block for/3,_(S), and

1 - cost(S) - 2-komit_(S)

eff(/3k(S) : [_n(S)) = 1 - cost(S) - 2-nomit,(S)

Proof." The proof follows from Theorem (10) and

Lemma (3).

Example (K). Returning to tile Big Viterbi Decoder

mentioned briefly in Section I: the BVD requires the con-

struction of the deBruijn graph B13 using 256 one-chip

realizations of the graph/_5({10}), which, by Theorem (7)

and Example (I), is a universal deBruijn building block
of efficiency 18/32 (see Fig. 7), and so it contains exactly
64- is = 36 edges.

According to Theorem (11), /35({10}) is a building

block for /_9({10}) and, in the BVD, 16 of the /_5({10})-

chips are wired together on a printed-circuit board to make

a/39({10}) board. Now /39({10}) is a universal deBruijn

building block of efficiency 374/512, and so it contains ex-
actly 1024. 374 = 748 edges. Itowever, 16-36 = 576 of these

edges are internal to the component chips, so that each

/39({10}) board actually has only 748 - 576 = 172 printed
wires. Finally, since /39({10}) has efficiency 374/512 as a

deBruijn building block, in order to build B13, there will

be 214 .(1 - 374_512J = 4415 backplane wires, i.e., wires external
to the board. In summary:

Unit Number Wires/ Total

type of units unit wires

chip 256 36 9216
board 16 172 2752

backplane 1 4416 4416

16384
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Table 1. Cheapest covers of {0,1} n, for 1 _< n < 10

n Cost.2 _ Efficiency S (precover)

i 2 0.000 (1)

2 3 0.2so (I)

3 s 0.37s {i}

4 9 0.438 {1) or {10)

s 14 o.s63 {1o)
6 23 o._1 {io}

z 40 o.¢ss {lo)
8 72 0.719 {100,1101,010101,010111,

011111,0000001,0000101, 0000111}

9 127 0.752 {I00,1101,0000001,0101011,0101111,

0111111,00001011,00001111,01010101}

10 229 0.776 {100,1101,01010101,01010111,01111111,

000000001,000000101,000000111,

000010101,000010111,000011111)
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Fig. 1. The deBruijn graph B 3.

110o

010

001 I

0011

I

J

0111_-_

lol

lO0

_o,o,
J

o,_o I ,,o J

Fig. 3. A B 3 subgraph with density 6/16. In

the notation of Section IV, this Is the graph

B3({1,000}). In the notation of Section V, it Is

the graph _3({1}). It Is a universal deBrulJn

aubgraph ot efficiency 3/8.

(b)

Fig. 2. Two equivalent definitions of the de-

Brui|n graph Bn: (a) four vertices connected

to the vertex labelled x (x Is an n- bit string),

and (b) vertices st the left and right ends of the

edge labelled X(XIs an (n -Jr- 1)- bit string).
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I 0010

0100

1001

I 0101 1010 ]

1011

0001

0011 1100

0110

Fig. 4. Two copies of the B 3 subgraph H from Fig. 3, relabelled

and wired together to make B 4 (edge labels omitted).

I

I 00,,I

001A1

I

I 0,,, I
01Al1_-"_

_A

1
01AO I

01A01

IA01 I

01A10

1All I

I

I 1A00

Ol_OJ

1A10 ]

Fig. S. The graph B3(S,A), obtained by Insert-

Ing the symbol A immediately after the first oc-

currence of a substrlng from S= {1,000} In the

corresponding label in B 3 (S) (Fig. 3).
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B3 (S, O)

00111

0011

I
0111 }

01111_I--_

o11o

01101

1101 I

01110

1111 ]

I
I 1100

I 1110 ]

B3(S, 1)

Fig. 6. Illustrating Theorem 4.6: B3(S,0) U B3(S,1) = B4(S)

(compare with Fig. 4).

Fig. 7. One possible layout of the B5({10}) chip used to build the

BVD. All edges are directed from left to right. The vertex labels

shown are the decimal equivalents of the actual five-bit binary

labels, and the edge labels have been omitted.
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